

Copyright Security-Assessment.com Ltd 2005

White Paper

Exploiting Freelist[0] On XP Service Pack 2

Prepared by: Brett Moore

 Network Intrusion Specialist, CTO

 Security-Assessment.com

 brett.moore@security-assessment.com

Date: December 2005

07/12/2005 Page 2 of 14

Copyright Security-Assessment.com Ltd 2005

AbstractAbstractAbstractAbstract

Windows XP Service pack 2 introduced some new security measures in an
attempt to prevent the use of overwritten heap headers to do arbitrary byte writing.
This method of exploiting heap overflows, and the protection offered by service
pack 2, is widely known and has been well documented in the past.

What this paper will attempt to explain is how other functionality of the heap
management code can be used to gain execution control after a chunk header
has been overwritten.

In particular this paper takes a look at exploiting freelist[0] overwrites.

This document does not cover the basics of heap overflows, and we suggest the
reader has studied and fully understands the following material;

� Reliable Windows Heap Exploits, Matt Conover & Oded Horovitz
http://www.cybertech.net/~sh0ksh0k/heap/CSW04%20-
%20Reliable%20Windows%20Heap%20Exploits.ppt

� XPSP2 Heap Exploitation, Matt Conover
http://www.cybertech.net/~sh0ksh0k/heap/XPSP2%20Heap%20Exploitati
on.ppt

IntroductionIntroductionIntroductionIntroduction

Firstly the methods explained in this document are not generic. They are specific
to the vulnerable application and heap overflow situation. However, it is highly
likely that these methods could be used under real world scenarios.

To demonstrate code execution conditions a sample vulnerable application has
been constructed that contains a function lookup table. The sample exploits either
overwrite the function table or a pointer to it which is then used in a call
instruction.

The later two examples demonstrate how the atexit() pointers and CRT
termination routines can be overwritten to execute arbitrary code.

XP SP XP SP XP SP XP SP 2 2 2 2 Heap Heap Heap Heap

ProtectionProtectionProtectionProtection

Windows XP service pack 2 contains code to prevent the abuse of the unlinking
functionality of the heap management routines. It does this by validating the
forward and back links before doing the unlinking.

If this validation fails, a debug message is displayed (if a debugger is enabled)
BUT execution will still continue as long as an exception is not caused.

It is due to this continued execution that the methods explained in this document
are successful; in fact one of the methods exploits the fact that the heap
management will return a known invalid heap chunk to the requesting process.

The MethodsThe MethodsThe MethodsThe Methods

Two new methods of exploitation are explained in this paper. The first allows for
the address of user supplied data to be written to a semi arbitrary location. The
other allows for a semi arbitrary address to be returned to a HeapAlloc call.

07/12/2005 Page 3 of 14

Copyright Security-Assessment.com Ltd 2005

The Heap In UseThe Heap In UseThe Heap In UseThe Heap In Use

Initially one free chunk is created, that is then split up as required. Chunks are
freed to either the lookaside or freelists linked lists. Chunks on the freelists are
coalesced when one or more marked free chunk are grouped together.

Initial Heap

Allocated

A,B,C

Free B

Free A

A+B Coalesced

Heap

Management

Heap

Management

Heap

Management

Heap

Management

Last Free

Chunk Header

Chunk A Header

Chunk A Header

Free Chunk

Header

Chunk A Data

Chunk A Data

Chunk B Header

Free Chunk

Header

Chunk B Data

Chunk C Header

Chunk C Header

Chunk C Header

Chunk C Data

Chunk C Data

Chunk C Data

Last Free

Chunk Header

Last Free

Chunk Header

Last Free

Chunk Header

Last Free

Chunk Data

 Last Free

Chunk Data

 Last Free

Chunk Data

 Last Free

Chunk Data

07/12/2005 Page 4 of 14

Copyright Security-Assessment.com Ltd 2005

The Heap ChunksThe Heap ChunksThe Heap ChunksThe Heap Chunks

The heap allocates memory in blocks that are referred to as chunks. A heap
chunk consists of both the chunk header and the chunk data.

A Used Chunk

WORD WORD BYTE BYTE BYTE BYTE

Self Size Prev Size CK FL UN SI

User Data

User Data

A Chunk On Lookaside

WORD WORD BYTE BYTE BYTE BYTE

Self Size Prev Size CK FL UN SI

FLINK User Data

User Data

A Chunk On FreeLists

WORD WORD BYTE BYTE BYTE BYTE

Self Size Prev Size CK FL UN SI

FLINK BLINK

User Data

Chunk Fields

Self Size

 Size of this chunk

Prev Size

 Size of previous chunk

CK

 Chunk cookie

FL

 Chunk flags

UN

 Unused

SI

 Segment Index

FLINK

Forward Link

BLINK

Back Link

Flags

00 Free

01 Busy

02 Extra Present

04 Fill Pattern

08 Virtual Alloc

10 Last Entry

20 FFU1

40 FFU2

80 No Coalesce

07/12/2005 Page 5 of 14

Copyright Security-Assessment.com Ltd 2005

Allocation Allocation Allocation Allocation

ProcessProcessProcessProcess

When a request to allocate heap memory is received the following process is
followed.

If the found chunk needs to be resized then the following happens;

� Chunk->Size is set to Requested Size

� A new chunk is created at Chunk+Requested Size

� This new chunk is returned to the applicable freelist

[A] If a chunk doesn’t exist in the applicable freelist[n] it looks for a freelist holding larger chunks.

If none exist then it falls back to checking freelists[0]. It does not check the lookaside for larger

chunks.

[A]

None Found

Found Chunk

Found Chunk

Size > 1k

Size < 1k

Size >= 512k HeapAlloc(SIZE) Virtual Memory Used

Check Lookaside[n]

Check Freelist[n]

None Found

Found Chunk Check Freelist[0]

None Found

Expand Last Free

Chunk
Found Chunk

Resize Chunk (Size(Chunk)-Requested Size) <16bytes No Resize

(Size(Chunk)-Requested Size) >=16bytes Chunk Is Resized

07/12/2005 Page 6 of 14

Copyright Security-Assessment.com Ltd 2005

Alloc From Alloc From Alloc From Alloc From

Freelist[0]Freelist[0]Freelist[0]Freelist[0]

When an allocation is done from freelist[0] the heap manager first checks to make
sure that there is at least one chunk large enough for the request. It does this by
checking the size of the last chunk in the list.

If the last chunk is large enough, then searching starts at the first chunk in the list.
The heap manager moves through the list by loading the FLINK of each chunk
and checking the size, until it finds a chunk large enough.

7C9113E2 movzx eax,word ptr [eax] ; Check size of last chunk
7C9113E5 cmp eax,edi ; Compare against requested
7C9113E7 jb 7C911C6B ; Jump if too small (need to alloc more)
7C9113ED mov eax,dword ptr [ebp-28h] ; Get first chunk in freelist[0]

7C9113F0 mov eax,dword ptr [eax] ; Load FLINK
7C9113F2 mov dword ptr [ebp-6Ch],eax
7C9113F5 cmp dword ptr [ebp-28h],eax
7C9113F8 je 7C911C6B
7C9113FE lea esi,[eax-8] ; Move to size
7C911401 mov dword ptr [ebp-38h],esi
7C911404 movzx ecx,word ptr [esi] ; Load size
7C911407 cmp ecx,edi ; Check size
7C911409 jb 7C9113F0 ; To small get next (JMP above)

Once a suitable chunk is found, it is unlinked as per normal freelist[] unlinking.

7C91142E mov edi,dword ptr [ecx] ; Do the security check
7C911430 cmp edi,dword ptr [eax+4]
7C911433 jne 7C934380 ; Jump if corrupt
7C911439 cmp edi,edx
7C91143B jne 7C934380 ; Jump if corrupt

7C911441 mov dword ptr [ecx],eax ; Do the unlink
7C911443 mov dword ptr [eax+4],ecx ;

. Return to here from corrupt chunk message
7C911446 mov al,byte ptr [esi+5] ; Get flag

If the size of the chunk to use is larger than the requested size by more than 1
block, then it needs to be split and a new chunk header created.

7C911496 test ebx,ebx ; Check if diff = 0 (No resize)
7C911498 je 7C911566
7C91149E cmp ebx,1 ; Check if difference is 1 block
7C9114A1 je 7C911158 ; Jump if no resize required

7C9114A7 mov eax,dword ptr [ebp-64h] ; Start Creation of new chunk
7C9114AA lea edi,[esi+eax*8] ; Move to place new header

7C9114AD mov dword ptr [ebp-144h],edi ;
7C9114B3 mov cl,byte ptr [ebp-1Dh] ;
7C9114B6 mov byte ptr [edi+5],cl ;
7C9114B9 mov word ptr [edi+2],ax ; CREATE NEW HEADER
7C9114BD mov al,byte ptr [esi+7] ;
7C9114C0 mov byte ptr [edi+7],al ;
7C9114C3 mov word ptr [edi],bx ; Set Size of new chunk
7C9114C6 test cl,10h ;
7C9114C9 je 7C911633 ; Test if last chunk

7C9114CF xor eax,eax
7C9114D1 mov al,byte ptr [edi+5]
7C9114D4 and eax,10h
7C9114D7 mov byte ptr [edi+5],al

07/12/2005 Page 7 of 14

Copyright Security-Assessment.com Ltd 2005

Then the chunk needs to be inserted back in the freelists[]. If the size of the new
chunk is >= 80 blocks then this is done by checking all the chunks in freelist[0] to
find one larger than the newly created chunk. Once this is done the new chunk is
linked back in to the freelist

7C9114DA cmp bx,80h ; Check size of new chunk
7C9114DF jb 7C911815 ; Jump if < 80

 ; New chunk will be in freelist[0]
7C9114E5 mov eax,dword ptr [ebp-1Ch]
7C9114E8 lea esi,[eax+178h] ; Ptr to freelist[0]
7C9114EE mov dword ptr [ebp-0E0h],esi
7C9114F4 cmp dword ptr [eax+170h],0
7C9114FB jne 7C9122DC

7C911501 mov eax,dword ptr [esi] ; Load ptr from freelist
7C911503 mov ecx,eax
7C911505 mov dword ptr [ebp-90h],ecx
7C91150B cmp esi,ecx ; Compare to see if last Chunk
7C91150D jne 7C910FCA ; If not last chunk (below)

7C911513 lea eax,[edi+8] ; Move to FLINK of new chunk
7C911516 mov dword ptr [ebp-0F0h],eax ;
7C91151C mov edx,dword ptr [ecx+4] ; Load BLINK From FLINK
7C91151F mov dword ptr [ebp-0F8h],edx ;

7C911525 mov dword ptr [eax],ecx ; Store Flink IN NEW CHUNK
7C911527 mov dword ptr [eax+4],edx ; Store BLINK in new chunk

7C91152A mov dword ptr [edx],eax ; Store Blinks->FLINK
7C91152C mov dword ptr [ecx+4],eax ; Store Flinks->BLINK
...

7C910FCA lea eax,[ecx-8] ; Move to beginning of current chunk
7C910FCD mov dword ptr [ebp-0E8h],eax ;
7C910FD3 cmp bx,word ptr [eax] ; Check size
7C910FD6 jbe 7C911513 ; Large enough

7C910FDC mov ecx,dword ptr [ecx] ; Otherwise Load FLINK
7C910FDE jmp 7C911505 ; Jump above and try again

07/12/2005 Page 8 of 14

Copyright Security-Assessment.com Ltd 2005

Valid AllocationValid AllocationValid AllocationValid Allocation

The following shows the process in a valid allocation.

FreeList[0]

0x00340178h 0x00341E90h 0x003430C0h

Chunk A

0x00341E88 0x0241h 0x0301h CK FL UN SI

0x00341E90h 0x003430C0h 0x00340178h

Chunk B

0x003430B8h 0x03E9h 0x0005h CK FL UN SI

0x003430C0h 0x00340178h 0x00341E90h

The process does an allocation.

g = HeapAlloc(hHeap,HEAP_ZERO_MEMORY,0x30)
Once a suitable chunk (Chunk A) is found, it is unlinked as per normal freelist[]
unlinking.

FreeList[0]

0x00340178h 0x003430C0h 0x003430C0h

Chunk A

0x00341E88 0x0241h 0x0301h CK FL UN SI

0x00341E90h 0x003430C0h 0x00340178h

Chunk B

0x003430B8h 0x03E9h 0x0005h CK FL UN SI

0x003430C0h 0x00340178h 0x00340178h

Since Chunk A is larger than the amount requested, a resize occurs.

FreeList[0]

0x00340178h 0x003430C0h 0x003430C0h

Chunk A

0x00341E88 0x0007h 0x0301h CK FL UN SI

0x00341E90h 0x003430C0h 0x00340178h

Chunk A(2)

0x00341EC0 0x023Ah 0x0007h CK FL UN SI

0x00341EC8h

Chunk B

0x003430B8h 0x03E9h 0x0005h CK FL UN SI

0x003430C0h 0x00340178h 0x00340178h

The heap manager starts searching at the FLINK of freelist[0]. In this case
Freelist[0]->FLINK points to the last chunk, so Chunk A(2) is inserted before
Chunk B.

ChunkA(2)->FLINK = Chunk B
ChunkA(2)->BLINK = Chunk B->BLINK
ChunkB->BLINK->FLINK = Chunk A(2)
ChunkB->BLINK – ChunkA(2)

07/12/2005 Page 9 of 14

Copyright Security-Assessment.com Ltd 2005

Exploiting Exploiting Exploiting Exploiting

Freelist[0] Freelist[0] Freelist[0] Freelist[0]

ReLinkingReLinkingReLinkingReLinking

The following shows the process when the header of any chunk sitting in
freelist[0] is overwritten. It exploits the fact that our overwritten header is used to
calculate the linked list position to insert a resized block.

FreeList[0] with overflowed chunk A header

0x00340178h 0x00341E90h 0x003430C0h

Chunk A

0x00341E88 0x0202h 0x0202h 0x58585858h

0x00341E90h 0xAAAAAAAAh 0xAAAAAAAAh

Chunk B

0x003430B8h 0x03E9h 0x0005h CK FL UN SI

0x003430C0h 0x00340178h 0x00341E90h

The process does an allocation.

g = HeapAlloc(hHeap,HEAP_ZERO_MEMORY,0x30)
Once a suitable chunk (Chunk A) is found, it is unlinked as per normal freelist[]
unlinking. EXCEPT, the security check will fail. So Freelists[0] will not be updated

FreeList[0]

0x00340178h 0x00341E90h 0x003430C0h

Chunk A

0x00341E88 0x0202h 0x0202h 0x58585858h

0x00341E90h 0xAAAAAAAAh 0xAAAAAAAAh

Chunk B

0x003430B8h 0x03E9h 0x0005h CK FL UN SI

0x003430C0h 0x00340178h 0x00341E90h

Since Chunk A is larger than the amount requested, a resize occurs.

FreeList[0]

0x00340178h 0x00341E90h 0x003430C0h

Chunk A

0x00341E88 0x0007h 0x0202h 0x58585858h

0x00341E90h 0xAAAAAAAAh 0xAAAAAAAAh

Chunk A(2)

0x00341EC0 0x01FBh 0x0007h CK FL UN SI

0x00341EC8h

Chunk B

0x003430B8h 0x03E9h 0x0005h CK FL UN SI

0x003430C0h 0x00340178h 0x00341E90h

The heap manager starts searching at the FLINK of freelist[0]. In this case
Freelist[0]->FLINK still points to chunk A. Chunk A has been updated with the
requested size, so is smaller than the new chunks size. The heap manager will
load the FLINK from chunk A as the address of the next chunk in the list.

07/12/2005 Page 10 of 14

Copyright Security-Assessment.com Ltd 2005

If ChunkA->FLINK points to a ‘fake chunk’ with a layout as shown below

Fake Chunk

-8 > newsize ???? ????????

0xAAAAAAAAh ???????? 0xWRITEABLE

Then Chunk A(2) will be inserted before our new chunk.
Thus

ChunkA(2)->FLINK = Chunk B
ChunkA(2)->BLINK = Chunk B->BLINK
ChunkB->BLINK->FLINK = Chunk A(2)
ChunkB->BLINK – ChunkA(2)

Which will cause;
 ChunkA(2)->FLINK = 0xAAAAAAAAh

ChunkA(2)->BLINK = 0xWRITEABLE
[0xWRITEABLE] = Chunk A(2)
[0xAAAAAAAAh +4]= ChunkA(2)

As can be seen the address of the new chunk is written to an arbitrary location.
So what good is this?

Original Chunk Overwritten

Chunk

 Split Chunk

Chunk Header

Overwritten

Header

Overwritten

Header

Overwritten

Data

New Chunk

Header

Chunk Data

Overwritten

Data

Overwritten

Data

The address that overwrites the location at our fake chunks FLINK points to the
FLINK of the new chunk header. So it can be used to overwrite a pointer to a
lookup table list, or if the FLINK/BLINK is executable opcodes it can be used to
overwrite a function pointer.

See Sample1.c for an example of this method

07/12/2005 Page 11 of 14

Copyright Security-Assessment.com Ltd 2005

Exploiting Exploiting Exploiting Exploiting

Freelist[0] Freelist[0] Freelist[0] Freelist[0]

SearchingSearchingSearchingSearching

The following shows the process when the header of any chunk, except the last,
sitting in freelist[0] is overwritten. It exploits the fact that the overwritten header is
used to search for a chunk to return to the process.

The size field of Chunk A is overwritten with a smaller size than is requested, and
the FLINK is overwritten with the address we want to force the allocation to return.
The BLINK of the chunk is not overwritten.

FreeList[0] with overflowed chunk A header

0x00340178h 0x00341E90h 0x003430C0h

Chunk A

0x00341E88 0x0001h 0x0001h 0x58585858h

0x00341E90h 0xAAAAAAAAh 0x00390178h

Chunk B

0x003430B8h 0x03E9h 0x0005h CK FL UN SI

0x003430C0h 0x00340178h 0x00341E90h

The process does an allocation.

g = HeapAlloc(hHeap,HEAP_ZERO_MEMORY,0x30)
If the overwritten chunk is queried during the search, then the FLINK will be
loaded and used as the address of the next chunk in the list.

ChunkA->FLINK needs to point to a ‘fake chunk’ with a layout as shown below.

#size needs to <= the requested number of blocks +1, to prevent chunk resizing.

Fake Chunk

-8 #newsize ???? ????????

0xAAAAAAAAh 0xREADABLE 0xREADABLE

The heap manager will attempt to use the fake chunk as if it were real. This
means that it will attempt to unlink the chunk from freelist[0] which is why the two
addresses need to be readable. The unlinking will fail but the heap manager will
still return the address of the fake chunk to the process.

This will allow for the overwriting of arbitrary memory with any data the process
stores in the returned chunk.

See Sample2.c for an example of this method

07/12/2005 Page 12 of 14

Copyright Security-Assessment.com Ltd 2005

Exploiting Exploiting Exploiting Exploiting

atexit() Pointersatexit() Pointersatexit() Pointersatexit() Pointers

If the vulnerable process has installed an atexit pointer through the use of the
atexit() function, it is possible to overwrite the pointer table.

When the process exits, the pointer table is referenced using code similar to that
shown below.

0040141C mov ecx,dword ptr ds:[40BFB0h] ; Load upper pointer
00401422 push esi
00401423 lea esi,[ecx-4] ; Adjust
00401426 cmp esi,eax ; Check list not empty
00401428 jb 0040143D
0040142A mov eax,dword ptr [esi] ; Load the function pointer
0040142C test eax,eax ; Check it is not NULL
0040142E je 00401432
00401430 call eax ; Call the function
00401432 sub esi,4 ; Adjust upper pointer
00401435 cmp esi,dword ptr ds:[40BFB4h] ; Check against lower pointer
0040143B jae 0040142A ; Jump back and call next function

The referenced table looks like the diagram below.

Address Upper Pointer Lower Pointer

0x0040BFB0h 0x00031954h 0x00031950h

Address Function Ptr

0x00031950h 0x00401290

This sample is included as an example only and would probably be difficult to
carry out under real world conditions. The exploit will overwrite the freelists[n] with
pointers to the atexit pointer table.

To overwrite the atexit() ptr table we will;

1. overwrite a chunk in freelist[0]
2. exploit the freelist[0] searching routine to return a pointer to the heap

freelists
3. overwrite the freelists with a pointer to the atexit() pointer table
4. overwrite the atexit() ptr table to point to a portion of itself containing the

code to execute.

See Sample3.c for this example

07/12/2005 Page 13 of 14

Copyright Security-Assessment.com Ltd 2005

Exploiting CRT Exploiting CRT Exploiting CRT Exploiting CRT

TerminatioTerminatioTerminatioTermination n n n

PointersPointersPointersPointers

If the vulnerable process has been dynamically linked with MSVCRT.DLL then it is
possible to overwrite the CRT termination pointer table. The termination routine
has changed slightly since I talked about it at Black Hat 2004 but is still exploitable
under the right situation.

When the process exits, the pointer table is referenced using code similar to that
shown below.

77C39E06 mov ecx,dword ptr ds:[77C627A0h] ; Load lower pointer
77C39E0C test ecx,ecx ; Check it is not NULL
77C39E0E je 77C39E39
77C39E10 mov eax,[77C6279C] ; Load upper pointer
77C39E15 sub eax,4 ; Adjust
77C39E18 cmp eax,ecx ; Check not finished
77C39E1A jmp 77C39E32
77C39E1C mov eax,dword ptr [eax] ; Load the function pointer
77C39E1E test eax,eax ; Check it is not NULL
77C39E20 je 77C39E24
77C39E22 call eax ; Call the termination routine
77C39E24 mov eax,[77C6279C] ; Load the upper pointer
77C39E29 sub eax,4 ; Adjust it
77C39E2C cmp eax,dword ptr ds:[77C627A0h] ; Check not finished
77C39E32 mov [77C6279C],eax ; Store the new upper pointer
77C39E37 jae 77C39E1C ; Jump back to call the function

Again, this sample is included as an example only and would probably be difficult
to carry out under real world conditions. The exploit will overwrite the heaps
lookaside list pointer, with a pointer to the overflow data. The overflow data will
contain pointers to the CRT termination pointer table.

To overwrite the termination ptr table we will;

1. overwrite a chunk in freelist[0]
2. exploit the freelist[0] relinking routine to overwrite the heap pointer to the

lookaside list @ [base+0x580h]
3. This will cause the lookaside list to contain our pointers to the

termination() pointer table
4. overwrite the termination() pointer table to point to a portion of itself

containing the code to execute.

See Sample4.c for this example

After overwriting the termination pointer table it will look like this.

Address Upper Pointer Lower Pointer

0x77C6279C 0x77C627A8 0x77C627A4

Address Function Ptr

0x77C627A4h 0x77C627A8h

Address Function Code

0x77C627A8h 0xCCCCCCCC

07/12/2005 Page 14 of 14

Copyright Security-Assessment.com Ltd 2005

Final SummaryFinal SummaryFinal SummaryFinal Summary

The age of the standard 4byte arbitrary write method of heap overflow exploitation
is over. Microsoft has appeared to fix the problem with a quick and simple fix.

The only obvious flaw with the FLINK/BLINK fix is that after a heap corruption has
been detected, process execution will continue. Perhaps there could be a per
process setting, so that important services could restart after a heap corruption
instead of blindly using user supplied input for further operations.

Hopefully this paper has shown that heap overflows are still dangerous and in
some situations can still be exploited reliably and easily. This paper has
demonstrated two new methods of exploiting heap overflows, and there are sure
to be more.

ReferencesReferencesReferencesReferences

Reliable Windows Heap Exploits, Matt Conover & Oded Horovitz
http://www.cybertech.net/~sh0ksh0k/heap/CSW04%20-
%20Reliable%20Windows%20Heap%20Exploits.ppt
XPSP2 Heap Exploitation, Matt Conover
http://www.cybertech.net/~sh0ksh0k/heap/XPSP2%20Heap%20Exploitati
on.ppt

Security-Assessment.com
www.security-assessment.com

About SecurityAbout SecurityAbout SecurityAbout Security----

Assessment.com Assessment.com Assessment.com Assessment.com

Security-Assessment.com is an established team of Information Security
consultants specialising in providing high quality Information Security Assurance
services to clients throughout Australasia. We provide independent advice, in-
depth knowledge and high level technical expertise to clients who range from
small businesses to some of the worlds largest companies

Using proven security principles and practices combined with leading software
and proprietary solutions we work with our clients to provide simple and
appropriate assurance solutions to Information security challenges that are easy
to understand and use for their clients.

Security-Assessment.com provides security solutions that enable developers,
government and enterprises to add strong security to their businesses, devices,
networks and applications.

Copyright Copyright Copyright Copyright

InformationInformationInformationInformation

These articles are free to view in electronic form; however, Security-
Assessment.com and the publications that originally published these articles
maintain their copyrights. You are entitled to copy or republish them or store them
in your computer on the provisions that the document is not changed, edited, or
altered in any form, and if stored on a local system, you must maintain the original
copyrights and credits to the author(s), except where otherwise explicitly agreed
by Security-Assessment.com Ltd.

